N ov 2 00 2 OPERS AND THETA FUNCTIONS
نویسنده
چکیده
We construct natural maps (the Klein and Wirtinger maps) from moduli spaces of vector bundles on an algebraic curve X to affine spaces, as quotients of the nonabelian theta linear series. We prove a finiteness result for these maps over generalized Kummer varieties (moduli of torus bundles), leading us to conjecture that the maps are finite in general. The conjecture provides canonical explicit coordinates on the moduli space. The finiteness results give low–dimensional parametrizations of Jacobians (in P for generic curves), described by 2Θ functions or second logarithmic derivatives of theta. We interpret the Klein and Wirtinger maps in terms of opers on X. Opers are generalizations of projective structures, and can be considered as differential operators, kernel functions or special bundles with connection. The matrix opers (analogues of opers for matrix differential operators) combine the structures of flat vector bundle and projective connection, and map to opers via generalized Hitchin maps. For vector bundles off the theta divisor, the Szegö kernel gives a natural construction of matrix oper. The Wirtinger map from bundles off the theta divisor to the affine space of opers is then defined as the determinant of the Szegö kernel. This generalizes the Wirtinger projective connections associated to theta characteristics, and the assoicated Klein bidifferentials.
منابع مشابه
2 00 2 Opers and Theta Functions
We construct maps from moduli spaces of vector bundles on a Riemann surface X to opers on X, using nonabelian theta functions. Opers are generalizations of projective structures, and can be considered as differential operators, kernel functions or special bundles with connection. The matrix opers (analogues of opers for matrix differential operators) combine the structures of flat vector bundle...
متن کاملGains from diversification on convex combinations: A majorization and stochastic dominance approach
By incorporating both majorization theory and stochastic dominance theory, this paper presents a general theory and a unifying framework for determining the diversification preferences of risk-averse investors and conditions under which they would unanimously judge a particular asset to be superior. In particular, we develop a theory for comparing the preferences of different convex combination...
متن کاملImproved immunogenicity of tetanus toxoid by Brucella abortus S19 LPS adjuvant.
BACKGROUND Adjuvants are used to increase the immunogenicity of new generation vaccines, especially those based on recombinant proteins. Despite immunostimulatory properties, the use of bacterial lipopolysaccharide (LPS) as an adjuvant has been hampered due to its toxicity and pyrogenicity. Brucella abortus LPS is less toxic and has no pyrogenic properties compared to LPS from other gram negati...
متن کاملSteady electrodiffusion in hydrogel-colloid composites: macroscale properties from microscale electrokinetics.
A rigorous microscale electrokinetic model for hydrogel-colloid composites is adopted to compute macroscale profiles of electrolyte concentration, electrostatic potential, and hydrostatic pressure across membranes that separate electrolytes with different concentrations. The membranes are uncharged polymeric hydrogels in which charged spherical colloidal particles are immobilized and randomly d...
متن کاملPerturbative Analysis of Dynamical Localisation
In this paper we extend previous results on convergent perturbative solutions of the Schrödinger equation of a class of periodically timedependent two-level systems. The situation treated here is particularly suited for the investigation of two-level systems exhibiting the phenomenon of (approximate) dynamical localisation. We also present a convergent perturbative expansion for the secular fre...
متن کامل